



## COURSE DESCRIPTION CARD - SYLLABUS

**Course name**

Polymer and composite biomaterials [S2IBio1E>BPiK]

---

**Course**

|                                        |                   |
|----------------------------------------|-------------------|
| Field of study                         | Year/Semester     |
| Biomedical Engineering                 | 1/2               |
| Area of study (specialization)         | Profile of study  |
| Engineering of Implants and Prostheses | general academic  |
| Level of study                         | Course offered in |
| second-cycle                           | English           |
| Form of study                          | Requirements      |
| full-time                              | compulsory        |

---

**Number of hours**

|           |                    |       |
|-----------|--------------------|-------|
| Lecture   | Laboratory classes | Other |
| 30        | 15                 | 0     |
| Tutorials | Projects/seminars  |       |
| 0         | 0                  |       |

---

**Number of credit points**

3,00

---

**Coordinators**

dr inż. Monika Knitter  
monika.knitter@put.poznan.pl

---

**Lecturers****Prerequisites**

The student starting this course should have basic knowledge of polymeric materials used in medical applications.

---

**Course objective**

Acquainting with polymers and their composites as materials for medical applications.

**Course-related learning outcomes****Knowledge:**

The student has in-depth knowledge on physics and chemistry needed in biomedical engineering. The student knows the rules of measuring of selected physical and mechanical properties of biomaterials. The student has fundamental knowledge on the life-cycle of medical product.

**Skills:**

The student knows how to retrieve information from literature, databases and other sources (also in English) in the area of biomedical engineering;

The student knows how to identify and formulate simple engineering tasks of a practical character,

typical for biomedical engineering, especially selecting of materials for particular biomedical applications.

#### Social competences:

The student is aware of the necessity for continuous learning and knows how to inspire and organize the process of learning of other people.

The student knows how to prioritize tasks either defined by him/herself or by others.

### Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Knowledge acquired during the lecture is verified by the colloquium carried out during the last lecture. The test consists of 10 differently scored questions. Counting threshold: 50%. Final issues will be sent to students by email

Laboratory: credit based on the assessment of the current progress in the implementation of laboratory tasks and reports

### Programme content

Lecture: Polymer materials with self-reinforcing properties (monopolymer materials and their properties). Composites with reduced density and increased strength, modified with biocompatible fillers for applications as materials for the construction of medical devices. Materials with a cellular structure used in the technologies of auxiliary rehabilitation devices. Methods of forming of non-standard polymeric biomaterials. Problems with recycling of structural polymeric materials after their use.

Laboratory: An influence of usage conditions on properties of biomaterials used for surgical threads and dental fillings. Assessment of an influence of the filler type (carbon, glass) on mechanical properties of thermoplastic composites used in medicine. Technology of drains" production in medicine.

### Course topics

none

### Teaching methods

1. Lecture: multimedia presentation, illustrated with films
2. Laboratory: conducting experiments, solving problems, discussion.

### Bibliography

#### Basic

Leda H., „Materiały inżynierskie w zastosowaniach biomedycznych”, Wydawnictwo Politechniki Poznańskiej, 2012.

Nałęcz M., „Biomateriały” Akademicka Oficyna wydawnicza EXIT, 2000

Mazurkiewicz A., „Wprowadzenie do biomateriałów”, Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego, 2014.

#### Additional

### Breakdown of average student's workload

|                                                                                                                                        | Hours | ECTS |
|----------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| Total workload                                                                                                                         | 75    | 3,00 |
| Classes requiring direct contact with the teacher                                                                                      | 47    | 2,00 |
| Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation) | 28    | 1,00 |